Skip to main content

About Fraud Prevention

TrustGate provides comprehensive fraud prevention tools to detect and block fraudulent applications, protecting your business from identity fraud, synthetic identities, and account takeover.

Fraud Landscape

Common Fraud Types

Fraud TypeDescriptionDetection Method
Identity FraudUsing stolen identity documentsDocument verification, biometrics
Synthetic IdentityFabricated identities using mixed dataData correlation, device intelligence
Document FraudAltered or fake documentsAI document analysis
Account TakeoverHijacking existing accountsDevice fingerprinting, behavioral analysis
Application FraudMultiple fraudulent applicationsVelocity checks, deduplication

Fraud Prevention Stack

┌─────────────────────────────────────────────────────────┐
│ FRAUD PREVENTION │
├──────────────┬───────────────┬───────────────┬──────────┤
│ Document │ Biometric │ Device │ Velocity │
│ Analysis │ Verification │ Intelligence │ Checks │
├──────────────┼───────────────┼───────────────┼──────────┤
│ • Tampering │ • Face match │ • Fingerprint │ • Rate │
│ • Forgery │ • Liveness │ • Risk score │ • Volume │
│ • Expiry │ • Deepfake │ • Geo/IP │ • Pattern│
└──────────────┴───────────────┴───────────────┴──────────┘

v
┌─────────────────────────────────────────────────────────┐
│ RISK ENGINE + ML MODELS │
│ Combines signals for fraud probability score │
└─────────────────────────────────────────────────────────┘

v
┌─────────────────────────────────────────────────────────┐
│ AUTOMATED DECISIONS │
│ Accept / Review / Reject based on thresholds │
└─────────────────────────────────────────────────────────┘

Key Features

Document Fraud Detection

AI-powered analysis detects:

  • Physical tampering: Cut-and-paste attacks, laminate manipulation
  • Digital manipulation: Photoshop edits, font inconsistencies
  • Forgery indicators: Template mismatches, security feature absence
  • Data consistency: MRZ validation, date logic checks

Biometric Verification

Verify the person matches their documents:

  • Face matching: Compare selfie to document photo
  • Liveness detection: Confirm live person, not photo/video
  • Deepfake detection: Identify AI-generated faces
  • Passive liveness: Detect spoofing without user action

Device Intelligence

Assess risk from device signals:

  • Device fingerprinting: Identify unique device characteristics
  • Fraud scoring: Risk assessment based on device history
  • Geolocation: IP location vs claimed location
  • Proxy/VPN detection: Identify connection masking

Velocity Controls

Detect rapid fraudulent activity:

  • Application velocity: Multiple apps from same device/IP
  • Document reuse: Same document across applications
  • Data clustering: Shared data points across applicants

Getting Started

Enable Fraud Checks

curl -X POST https://api.bytrustgate.com/v1/verifications \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"applicant_id": "550e8400-e29b-41d4-a716-446655440000",
"checks": [
"document_verification",
"biometric_verification",
"device_intelligence"
],
"fraud_detection": {
"enabled": true,
"sensitivity": "high"
}
}'

Fraud Score Response

{
"verification_id": "ver_123456",
"fraud_assessment": {
"fraud_score": 85,
"fraud_risk": "high",
"recommendation": "reject",
"signals": [
{
"signal": "document_tampering",
"confidence": 0.92,
"details": "Photo area shows signs of digital manipulation"
},
{
"signal": "device_previously_fraudulent",
"confidence": 0.88,
"details": "Device linked to 3 previous rejected applications"
}
]
}
}

Fraud Score Ranges

ScoreRisk LevelRecommendation
0-20Very LowAuto-approve
21-40LowStandard process
41-60MediumAdditional review
61-80HighManual investigation
81-100Very HighLikely reject

Fraud Detection Settings

Configure Sensitivity

curl -X PUT https://api.bytrustgate.com/v1/settings/fraud-detection \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"sensitivity": "high",
"auto_reject_threshold": 85,
"manual_review_threshold": 60,
"checks_enabled": {
"document_tampering": true,
"biometric_spoofing": true,
"device_intelligence": true,
"velocity_checks": true,
"data_correlation": true
}
}'

Sensitivity Levels

LevelFalse Positive RateDetection Rate
Low~1%~80%
Medium~3%~90%
High~5%~95%
Very High~10%~99%

Fraud Prevention Metrics

View Fraud Statistics

curl -X GET "https://api.bytrustgate.com/v1/analytics/fraud?period=30d" \
-H "Authorization: Bearer YOUR_API_KEY"
{
"period": "30d",
"total_applications": 10000,
"fraud_detected": 450,
"fraud_rate": 0.045,
"breakdown": {
"document_fraud": 180,
"biometric_fraud": 120,
"synthetic_identity": 80,
"application_fraud": 70
},
"false_positive_rate": 0.028,
"financial_impact": {
"estimated_fraud_prevented": "$2,250,000",
"avg_fraud_value": "$5,000"
}
}

Best Practices

  1. Layer defenses: Use multiple fraud signals together
  2. Tune thresholds: Balance fraud prevention vs customer friction
  3. Review edge cases: Manually review borderline scores
  4. Monitor trends: Watch for new fraud patterns
  5. Update rules: Adapt to evolving fraud tactics

Next Steps