About Fraud Prevention
TrustGate provides comprehensive fraud prevention tools to detect and block fraudulent applications, protecting your business from identity fraud, synthetic identities, and account takeover.
Fraud Landscape
Common Fraud Types
| Fraud Type | Description | Detection Method |
|---|---|---|
| Identity Fraud | Using stolen identity documents | Document verification, biometrics |
| Synthetic Identity | Fabricated identities using mixed data | Data correlation, device intelligence |
| Document Fraud | Altered or fake documents | AI document analysis |
| Account Takeover | Hijacking existing accounts | Device fingerprinting, behavioral analysis |
| Application Fraud | Multiple fraudulent applications | Velocity checks, deduplication |
Fraud Prevention Stack
┌─────────────────────────────────────────────────────────┐
│ FRAUD PREVENTION │
├──────────────┬───────────────┬───────────────┬──────────┤
│ Document │ Biometric │ Device │ Velocity │
│ Analysis │ Verification │ Intelligence │ Checks │
├──────────────┼───────────────┼───────────────┼──────────┤
│ • Tampering │ • Face match │ • Fingerprint │ • Rate │
│ • Forgery │ • Liveness │ • Risk score │ • Volume │
│ • Expiry │ • Deepfake │ • Geo/IP │ • Pattern│
└──────────────┴───────────────┴───────────────┴──────────┘
│
v
┌─────────────────────────────────────────────────────────┐
│ RISK ENGINE + ML MODELS │
│ Combines signals for fraud probability score │
└─────────────────────────────────────────────────────────┘
│
v
┌─────────────────────────────────────────────────────────┐
│ AUTOMATED DECISIONS │
│ Accept / Review / Reject based on thresholds │
└─────────────────────────────────────────────────────────┘
Key Features
Document Fraud Detection
AI-powered analysis detects:
- Physical tampering: Cut-and-paste attacks, laminate manipulation
- Digital manipulation: Photoshop edits, font inconsistencies
- Forgery indicators: Template mismatches, security feature absence
- Data consistency: MRZ validation, date logic checks
Biometric Verification
Verify the person matches their documents:
- Face matching: Compare selfie to document photo
- Liveness detection: Confirm live person, not photo/video
- Deepfake detection: Identify AI-generated faces
- Passive liveness: Detect spoofing without user action
Device Intelligence
Assess risk from device signals:
- Device fingerprinting: Identify unique device characteristics
- Fraud scoring: Risk assessment based on device history
- Geolocation: IP location vs claimed location
- Proxy/VPN detection: Identify connection masking
Velocity Controls
Detect rapid fraudulent activity:
- Application velocity: Multiple apps from same device/IP
- Document reuse: Same document across applications
- Data clustering: Shared data points across applicants
Getting Started
Enable Fraud Checks
curl -X POST https://api.bytrustgate.com/v1/verifications \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"applicant_id": "550e8400-e29b-41d4-a716-446655440000",
"checks": [
"document_verification",
"biometric_verification",
"device_intelligence"
],
"fraud_detection": {
"enabled": true,
"sensitivity": "high"
}
}'
Fraud Score Response
{
"verification_id": "ver_123456",
"fraud_assessment": {
"fraud_score": 85,
"fraud_risk": "high",
"recommendation": "reject",
"signals": [
{
"signal": "document_tampering",
"confidence": 0.92,
"details": "Photo area shows signs of digital manipulation"
},
{
"signal": "device_previously_fraudulent",
"confidence": 0.88,
"details": "Device linked to 3 previous rejected applications"
}
]
}
}
Fraud Score Ranges
| Score | Risk Level | Recommendation |
|---|---|---|
| 0-20 | Very Low | Auto-approve |
| 21-40 | Low | Standard process |
| 41-60 | Medium | Additional review |
| 61-80 | High | Manual investigation |
| 81-100 | Very High | Likely reject |
Fraud Detection Settings
Configure Sensitivity
curl -X PUT https://api.bytrustgate.com/v1/settings/fraud-detection \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"sensitivity": "high",
"auto_reject_threshold": 85,
"manual_review_threshold": 60,
"checks_enabled": {
"document_tampering": true,
"biometric_spoofing": true,
"device_intelligence": true,
"velocity_checks": true,
"data_correlation": true
}
}'
Sensitivity Levels
| Level | False Positive Rate | Detection Rate |
|---|---|---|
| Low | ~1% | ~80% |
| Medium | ~3% | ~90% |
| High | ~5% | ~95% |
| Very High | ~10% | ~99% |
Fraud Prevention Metrics
View Fraud Statistics
curl -X GET "https://api.bytrustgate.com/v1/analytics/fraud?period=30d" \
-H "Authorization: Bearer YOUR_API_KEY"
{
"period": "30d",
"total_applications": 10000,
"fraud_detected": 450,
"fraud_rate": 0.045,
"breakdown": {
"document_fraud": 180,
"biometric_fraud": 120,
"synthetic_identity": 80,
"application_fraud": 70
},
"false_positive_rate": 0.028,
"financial_impact": {
"estimated_fraud_prevented": "$2,250,000",
"avg_fraud_value": "$5,000"
}
}
Best Practices
- Layer defenses: Use multiple fraud signals together
- Tune thresholds: Balance fraud prevention vs customer friction
- Review edge cases: Manually review borderline scores
- Monitor trends: Watch for new fraud patterns
- Update rules: Adapt to evolving fraud tactics
Next Steps
- Device Intelligence - Device fingerprinting and risk scoring
- Email Verification - Email risk assessment
- Phone Verification - Phone number validation
- Risk Signals - All fraud signals explained